Highly excited high spin states in ²²Ne

V.Z. Goldberg, S.Yu. Torilov,¹ M. Brenner,² K.A. Gridnev,¹ S.V. Khlebnikov,³ M. Mutterer,⁴ B.G. Novatski,⁵ Yu.G. Sobolev,⁶ W.H. Trzaska⁷, L.I. Vinogradov,¹ V.I. Zherebchevsky¹
¹Department of Nuclear Physics, Saint-Petersburg State University, St. Petersburg 198504, Russia
²Department of Physics, Abo Akademi, FIN-20500, Turku, Finland
³V. G. Khlopin Radium Institute, St.-Petersburg, 194021 Russia
⁴Institut f^{*}ur Kernphysik, Technische Universit^{*}at, 69289 Darmstadt, Germany
⁵Russian Scientific Centre "Kurchatov Institute", 123182 Moscow, Russia
⁶Flerov Laboratory of Nuclear Reactions, JINR, Dubna 141980, Russia
⁷Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

The main aim of this work is to study the high spin states of some highly excited levels in ²²Ne and to investigate their nature. The data on the presence of highly excited high-spin states in ²²Ne which decay by α -particles were obtained previously using the ¹⁸O+¹²C reaction (see [1] and references therein). However, in spite of a number of theoretical predictions for the properties of the ²²Ne quasimolecular bands [2], mainly experimental data are available only for the low lying levels which decay by γ -rays [3,4]. The scarce information on high-spin states in ²²Ne is in strong contrast with the data on ²⁰Ne, where many high-spin states were interpreted as members of ten rotational bands [5].

We used the ¹⁴C(¹²C, α_1)²²Ne* $\rightarrow \alpha_2$ +¹⁸O reaction to populate high spin states in ²²Ne. If α_1 detected at zero degrees, then the α_1 - α_2 angular correlations provide for a reliable way to make spinparity assignment. The angular correlation function, W(θ), will be

W(θ) ~ (2J + 1)/4 π [P_J(cos θ)]²

where θ is the angle of the second α -particle, J is the spin of the level in neon and P_J is the ordinary Legendre polynomials.

Experiment

The experiment was carried out using the K-130 Cyclotron of the University of Jyvaskyla, Finland and a 44 MeV ¹²C beam. The target was a self-supporting carbon foil with a thickness of 280 μ g/cm2 (80% of ¹⁴C). A schematic of the experimental arrangement is shown in fig. 1. The primary α -particle was detected using two 10 mm² silicon detectors of 380 μ m thickness placed at $\pm 3^{0}$ (below and above the horizontal plane) behind a 15 μ m platinum foil used to absorb the elastically scattered ¹²C ions. The α -particles were separated from other light products by pulse-shape discrimination techniques [6]. The α -particles from the decay of states in ²²Ne were detected in dE – E detector telescopes. Each telescope consisted of a position-sensitive gas proportional counter used as the dE detectors is 18 cm2. The thickness of the fully depleted PIN diodes was 380 μ m. The dE gas proportional counter has a single resistive wire and measures the energy loss of the particles and the X-coordinate of the points of

penetration. The counter was filled with Ar+10% CH4 gas mixture (pressure 250 Torr). A continuous renewing of the gas in the counter volume was provided. The length of the detectors (100 mm) spanned 40° in the laboratory system. The angles at the center of each diode were measured with the precision of better than $\pm 0.5^{\circ}$. The (α - α) double coincidence events were analyzed to generate the α_2 angular distributions for the decays to the ground state of ¹⁸O. The decay channel was selected using a two-dimensional plot E α_2 versus E α_1 at each α_2 angle as given by the position sensitivity of the α_2 detector.

Results

The measured angular correlation functions together with a fit by squared Legendre polynomials are shown in Fig. 1. Results of the analysis are summarized in Table I.

FIG. 1. Double angular correlations for the α decay of the 20.0MeV.

Present work	Adopted levels
17.0 MeV (unres. group)	17.05 MeV 7 ⁻ [23]
$18.45 \text{ MeV} \Gamma \sim 330 \text{ keV}$	18.42 MeV [22]
19.13 MeV (unres. group)	$19.28 \mathrm{MeV} 7^{-} [9]$
$20.0 \text{ MeV} 9^- \Gamma \sim 270 \text{ keV}$	$19.89(10^+)$ [12]
20.7 MeV 11 ⁻ $\Gamma \sim 340$ keV	20.85 MeV 9 ⁻ [9]
21.6 MeV 9 ⁻ $\Gamma \sim 350$ keV	21.84 9 [9]
$22.2 \text{ MeV} 12^+ \Gamma \sim 250 \text{ keV}$	(22.2) MeV $[22]$
22.9 MeV $\Gamma \sim 290$ keV	
24.0 MeV (unres. group)	24.14 MeV [24]
$25.0 \mathrm{MeV} 9^- \Gamma \sim 350 \mathrm{keV}$	
25.9 MeV (unres. group)	
27.0 MeV (unres. group)	26.89 MeV [24]

 Table I. ²²Ne levels. Energy, spin and parity information from this and other work.

A very characteristic back bending observed for the high spin states with the positive parity in 22 Ne and the comparison with 20 Ne (Fig.2) evidences that new 12⁺ level is the yrast level in 22 Ne.

FIG. 2. Effective moment of inertia versus of the square of the rotational frequency for the ²⁰Ne and ²²Ne yrast lines. The inset compares the yrast-spin trajectories for these nuclei as was obtained in [10].

Summary

The spins of five highly excited states in ²²Ne were determined by measuring double α - α angular correlations ${}^{14}C({}^{12}C,\alpha_1){}^{22}Ne^* \rightarrow \alpha_2 + {}^{18}O$ reaction. The 22.2 MeV (12⁺) state is assigned to the yrast line of ²²Ne in good agreement with theoretical prediction based on the Nilsson-Strutinsky formalism. The states at 20.7MeV (11⁻) and 21.6MeV (9⁻) were considered as members of the α -cluster rotational bands supporting the cluster model predictions.

- [1] S. Yildiz, M. Freer, N. Soic et al., Phys. Rev. C 73, 034601 (2006).
- [2] M. Kimura, Phys. Rev. C 75, 034312 (2007).
- [3] K.L. Keyes et al., J. Phys.G 31, S1903 (2005).
- [4] K.L. Keyes et al., Eur. Phys. J. A 25, 431 (2005)
- [5] D.R. Tilley et al., Nucl. Phys. A636, 249 (1998).
- [6] A.D. Panagiotou et al., Phys. Rev. C 5, 1995 (1972).
- [7] M. Mutterer, W. H. Trzaska, Yu. N. Kopatchet, et al., Nucl. Instrum. Methods Phys. Res. A608, 275 (2009).
- [8] R.M. Freeman et al., Phys. Rev. C 46, 589 (1992).
- [9] G.V. Rogachev, V.Z. Goldberg, T.Lonnroth et al., Phys. Rev. C 64, 051302 (2001).
- [10] Ragnarsson, S. Aberg, R.K. Sheline, Phys. Scr. 24, 215